
Physics 137B (Professor Shapiro) Spring 2010

Homework 4 Solutions

1. The relativistic correction to the Hamiltonian was derived in class to be

H1 = − p4

8m3
ec

2

Therefore the first order correction to the energy is

E
(1)
0 = −〈0| p

4 |0〉
8m3c2

= −(〈0| p2)(p2 |0〉)
8m3c2

Writing the momentum in terms of the operators a and a† we find

p2 = − h̄mω
2

(a† − a)2 = − h̄mω
2

(a†
2 − aa† − a†a+ a2)

Thus

p2 |0〉 = − h̄mω
2

(√
1
√

2 |2〉 −
√

1
√

1 |0〉
)

= − h̄mω
2

(√
2 |2〉 − |0〉

)
Using the orthogonality of the wavefunctions, we therefore find

E
(1)
0 = − 1

8m3c2
h̄2m2ω2

4
(2 + 1) = −3(h̄ω)2

32mc2

2. Using the formulae from the problem, we find for a B field in the z direction

H ′ = − eB

2mec
Lz

Since [H ′, Lz] = 0, the basis |` m〉 is the appropriate basis (the perturba-

tion already is diagonal in this basis so we don’t need to do a change of

basis)
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(a) The first order correction to the energy is

E
(1)
` m = − eB

2mec
〈` m|Lz |` m〉 = − eB

2mec
m

which breaks the degeneracy

(b) If we ignore the L · S coupling for now, then the argument from part

a still holds. For the P-wave state of hydrogen (` = 1) the energy

splits into 3 levels with energies 0 and ± eB
2mec

3. The spin-orbit coupling is of the form ~L · ~S. To see if ~L is conserved,

we take the commutator of each component with H ′. For example, the x

compoent has a commutator:

[Lx, H
′] = [Lx, Lx]Sx + [Lx, Ly]Sy + [Lx, Lz]Sz = ih̄(LzSy − LySz) 6= 0

Similarly, [Ly, H
′] 6= 0 and [Lz, H

′] 6= 0. The same argument holds for ~S:

[Sx, H
′] = [Sx, Sx]Lx + [Sx, Sy]Ly + [Sx, Sz]Lz = ih̄(SzLy − SyLz) 6= 0

For the case of J = L+ S however

[Lx + Sx, H
′] = [Lx, Lx]Sx + [Lx, Ly]Sy + [Lx, Lz]Sz + [Sx, Sx]Lx + [Sx, Sy]Ly + [Sx, Sz]Lz

= ih̄(LzSy − LySz + SzLy − SyLz) = 0

Similarly, the other 2 components vanish.

4. The expression for hyperfine splitting in hydrogen is:

∆Ehf =
µ0h̄

2e2gegp
6πa3memp

The hyperfine splitting for hydrogen has a numeric value of 5.9×10−6 eV.

The things that are different for the other systems listed in this problem

are:

• The masses of the two particles change

• If the two particles are close together in mass, we should use the

reduced mass to get the hydrogenlike energies
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• The g-factor, which is 5.5857 for the proton, is 2 for the muon and

for the electron.

In the case of positronium, the reduced mass is m2
e/(2me) = me/2 so the

hyperfine splitting is predicted to be:

∆Ehf (positronium) =
mp

me

ge
gp

(
me/2

memp/(mp +me)

)3

∆Ehf (hydrogen) = 4.8×10−4 eV

Similarly, for muonium we get

∆Ehf (muonium) =
mp

mµ

gµ
gp

(
memµ/(mµ +me)

memp/(mp +me)

)3

∆Ehf (H) = 1.8×10−5 eV

And for muonic hydrogen we get

∆Ehf (muonic hydrogen) =
me

mmu

ge
gµ

(
mµmp/(mµ +mp)

memp/(mp +me)

)3

∆Ehf (H) = 0.18 eV

5. If we compare the hyperfine splitting in this systen to that of hydrogen, the

differences are that the spin of the nucleus is 1 rather than 1
2

and that the

g factor is different for the deuteron is different from the proton. The spin

of the deuteron nucleus is 1 and the spin of the electron is 1
2
. Therefore,

the total spin of the system can be 3
2

or 1
2
. Using S2 = S2

1 +S2
2 +2~S1 ·S2 we

can solve for ~S1 · S2. If S = 3
2
, we get h̄2 and if S = 1

2
we get −2h̄2. Thus

the splitting has a factor of 3h̄2 rather than the 2h̄2 we get for hydrogen.

Using the same method as in the previous problem

∆Ehf (deuterium) =
gd
gp

mp

md

3

2
∆Ehf (hydrogen) = 1.6× 10−6 eV
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